
Managing Dependencies With Poetry

Christian Külker

2022‑05‑25

Contents
1 Installation . 1

2 One File To Bind Them All . 2

3 Installing the dependencies . 3

4 Considerations . 5

5 History . 6

6 Disclaimer of Warranty . 6

7 Limitation of Liability . 6

Asmany other fancy tools poetry is used to circumvent thewellmaintained packageman‑
ager of your distribution and this is called “Dependency Management for Python” or as
python‑poetry.org describes: “Python packaging and dependency management made
easy”.

Unlike pipenv, poetry is not in Debian, so it has to be downloaded from an unsupervised
location of the internet: github or pypi.

1 Installation
We leave out the insecure curl method. In the github README you can read the warn‑
ing “Be aware, however, that it will also install poetry’s dependencies which might cause
conflicts.”How can that be that a dependency manager needs to be afraid of conflicting
dependencies? Isn’t that the reason to use it in the first place. Forme this readsmore like
prose not poetry. Welcome to the new era of package “managers”!

1

https://python-poetry.org/
https://python-poetry.org/
https://pypi.org/project/pipenv/
https://python-poetry.org/
https://github.com/python-poetry/poetry
https://pypi.org/project/poetry/
https://github.com/python-poetry/poetry

Managing Dependencies With Poetry 2022‑05‑25

$ python3 -m pip install --user poetry
[...]
Successfully installed attrs-19.3.0 cachecontrol-0.12.6 cachy-0.3.0 \
certifi-2020.4.5.1 cffi-1.14.0 chardet-3.0.4 cleo-0.7.6 clikit-0.4.3 \
cryptography-2.9.2 html5lib-1.0.1 idna-2.9 importlib-metadata-1.1.3 \
jeepney-0.4.3 jsonschema-3.2.0 keyring-20.0.1 lockfile-0.12.2 \
msgpack-1.0.0 pastel-0.2.0 pexpect-4.8.0 pkginfo-1.5.0.1 \
poetry-1.0.5 ptyprocess-0.6.0 pycparser-2.20 pylev-1.3.0

2 One File To Bind Them All
The tool poetry handle dependency installation, building and packaging. It only needs
onefile: thePEP518 pyproject.toml and replaces setup.py , requirements.txt ,
setup.cfg , MANIFEST.in and Pipfile . Note, that not all files are needed by other
dependency managers.

[tool.poetry]
name = "example-pkg-ckuelker"
version = "0.0.1"
description = "A small example package"
license = "GPLv3"
authors = [

"Christian Külker <test-pypi-org@c8i.org>",
]
readme = 'README.md' # Markdown files are supported
repository = "https://github.com/ckuelker/python-packaging-tutorial-
example-package"
homepage = "https://github.com/ckuelker/python-packaging-tutorial-
example-package"
keywords = ['packaging', 'tutorial']

[tool.poetry.dependencies]
python = "~2.7 || ^3.2" # Compatible python versions must be declared here
toml = "^0.9"
Dependencies with extras
requests = { version = "^2.13", extras = ["security"] }
Python specific dependencies with prereleases allowed
pathlib2 = { version = "^2.2", python = "~2.7", allow-prereleases = true }
Very "secure" Git dependencies
cleo = { git = "https://github.com/sdispater/cleo.git", branch = "master" }

Christian Külker 2/6

https://python-poetry.org/
https://www.python.org/dev/peps/pep-0518/

Managing Dependencies With Poetry 2022‑05‑25

Optional dependencies (extras)
pendulum = { version = "^1.4", optional = true }

[tool.poetry.dev-dependencies]
pytest = "^3.0"
pytest-cov = "^2.4"

[tool.poetry.scripts]
my-script = 'my_package:main'

3 Installing the dependencies

poetry install
Updating dependencies
Resolving dependencies... (21.7s)

Writing lock file

Package operations: 9 installs, 5 updates, 0 removals

- Updating zipp (3.1.0 -> 1.2.0)
- Installing atomicwrites (1.4.0)
- Updating cryptography (2.9.2 -> 2.8)
- Installing more-itertools (5.0.0)
- Installing pluggy (0.13.1)
- Installing py (1.8.1)
- Installing coverage (4.5.4)
- Updating idna (2.9 -> 2.8)
- Installing pyopenssl (19.1.0)
- Installing pytest (3.10.1)
- Updating urllib3 (1.25.9 -> 1.24.3)
- Installing pytest-cov (2.8.1)
- Updating requests (2.23.0 -> 2.21.0)
- Installing toml (0.9.6)

This creates a big poetry.lock file. Unlike working with setup.py working with
test.pypi.org is not as straight forward.

Christian Külker 3/6

https://test.pypi.org

Managing Dependencies With Poetry 2022‑05‑25

$ poetry build
Building example-pkg-ckuelker (0.0.1)

[ModuleOrPackageNotFound]
No file/folder found for package example-pkg-ckuelker

Removing the name from the username creates the package.

$ poetry build
Building example-pkg (0.0.1)
- Building sdist
- Built example-pkg-0.0.1.tar.gz

- Building wheel
- Built example_pkg-0.0.1-py2.py3-none-any.whl
$ tree
dist
├── example_pkg-0.0.1-py2.py3-none-any.whl
├── example-pkg-0.0.1.tar.gz

However this do not conform to the test.pypi.org format:

$ tree
dist
├── example_pkg_ckuelker-0.0.1-py3-none-any.whl
└── example-pkg-ckuelker-0.0.1.tar.gz

Renaming the directory from example_pkg to example_pkg_ckuelker did the trick:

$ poetry build
Building example-pkg_ckuelker (0.0.1)
- Building sdist
- Built example-pkg_ckuelker-0.0.1.tar.gz

- Building wheel
- Built example_pkg_ckuelker-0.0.1-py2.py3-none-any.whl
$ tree dist
dist
├── example_pkg_ckuelker-0.0.1-py2.py3-none-any.whl
└── example-pkg_ckuelker-0.0.1.tar.gz

If your project has a unique name, testing with poetry works, if not renaming is the way
to go: this disqualifies poetry to use in package tutorials.

Christian Külker 4/6

https://test.pypi.org
https://python-poetry.org/
https://python-poetry.org/

Managing Dependencies With Poetry 2022‑05‑25

An alternative is to create a symbolic link.

ln -s example_pkg example_pkg_YOUR_USERNAME

On how to install the package and on how to upload this to test.pypi.org see packaging‑
python‑projects.

4 Considerations
Reading the reasoning behind poetry gives the impression of anot inventedhereproject:
about pipenv “I do not like the CLI it provides, or some of the decisions made, and I think
we canmake a better andmore intuitive one.” Intuitiveness is the best for a software one
writes by it oneself. Writing a tool because dependencymanagement is “convoluted” and
“hard to understand” for newcomers is a non argument. Dependencies management is
alwaysdifficult to understand. Theproject claims “[⋯] there is no reliable tool toproperly
resolve dependencies in Python”. I doubt it andmy answer: there is Debian. Usually what
I expect is: Feature X is missing, that is why I wrote software Y. None of this seem to be a
reason for this project.

However, theproject is correctwhenpointingonproblemsof pipenv installing oslo.utils==1.4.0 .
Meanwhile also poetry has its problems (and has bad error messages).

poetry add oslo.utils=1.4.0

[InvalidCharInStringError]
Invalid character '\n' in string at line 11 col 81

Which is not related to oslo , just a ” (quote character) was missing in line 11 of
pyproject.toml . Who would have thought that? Actually it added oslo fine with
the ” (quote character) fixed:

poetry add oslo.utils=1.4.0

Updating dependencies
Resolving dependencies... (14.9s)

Writing lock file

Package operations: 0 installs, 1 update, 0 removals

- Updating oslo.i18n (4.0.1 -> 2.1.0)

Christian Külker 5/6

https://test.pypi.org
../Package/packaging-python-projects.html
../Package/packaging-python-projects.html
https://python-poetry.org/
https://pypi.org/project/pipenv/
https://python-poetry.org/

Managing Dependencies With Poetry 2022‑05‑25

Not sure if this is an update, though. I would have expected 2.1.0 -> 4.0.1 . Looks
more like a downgrade⋯

But the colorful console characters are looking very cheerfully.

5 History

Version Date Notes

0.1.3 2022‑05‑25 Change comments, replace shell with bash
0.1.2 2022‑05‑09 Fix missing quotes in toml section
0.1.1 2020‑09‑05 Fix heading levels, fix and addmore links
0.1.0 2020‑05‑18 Initial release

6 Disclaimer of Warranty
THERE IS NO WARRANTY FOR THIS INFORMATION, DOCUMENTS AND PROGRAMS, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPTWHENOTHERWISESTATED INWRITINGTHECOPYRIGHTHOLDERSAND/OROTHERPARTIESPROVIDETHE INFORMATION,DOC‑
UMENTOR THE PROGRAM “AS IS”WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSEDOR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIEDWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL‑
ITY ANDPERFORMANCEOF THE INFORMATION, DOCUMENTS ANDPROGRAMS ISWITH YOU. SHOULDTHE INFORMATION, DOCUMENTS
OR PROGRAMS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

7 Limitation of Liability
INNOEVENTUNLESSREQUIREDBYAPPLICABLE LAWORAGREEDTO INWRITINGWILL ANYCOPYRIGHTHOLDER,ORANYOTHERPARTY
WHO MODIFIES AND/OR CONVEYS THE INFORMATION, DOCUMENTS OR PROGRAMS AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE INFORMATION, DOCUMENTS OR PROGRAMS (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOUOR THIRD PARTIES OR A FAILURE OF THE INFORMATION, DOCUMENTS OR PROGRAMS TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Christian Külker 6/6

	Installation
	One File To Bind Them All
	Installing the dependencies
	Considerations
	History
	Disclaimer of Warranty
	Limitation of Liability

