Python 118n L10n

Christian Kilker

2023-01-18

Contents

Internationalization (i18n) refers to the process of making a program aware of mul-
tiple languages. Localization (110n) refers to the process of adapting your program,
once internationalized, to the local language and cultural customs. A locale is a set
of internationalization parameters that defines a computer user’s language, region,
and any special variant preferences that the user wishes to see displayed in the user
interface of programs, scripts, or the desktop. Sometimes the locale consists of a
language code, like en, de, but more often it is a combination of a language code
and a country/region code, like en_EN or de_DE. This is because some countries
speak more than one language. Often a codeset information (which character
set to use) and a modifier is added. On POSIX systems this results in a string like
language[_territory][.codeset][@modifier] .

Example:

+ German language in Germany written in UTF-8: de_DE.UTF-8

» German language in Belgium written in ISO-8859: de_BE.IS0-8859-1

Python 118n L10n 2023-01-18

+ German language in Belgium written in 1SO-8859 with the EURO symbol:
de_BE.IS0-8859-15@euro often shorted to de_BE5@euro as the EURO
symbol is an option in ISO-8859 but not in UTF-8.

+ Application: python3 + gettext

1 Internationalization

Often GNU gettext orasimilar system is used. The approach consists of several steps:

1. A program is written with special tags or functions known to gettext , such as
_ . Each call to print is processed by gettext . So print works as a wrapper for
gettext . Theusual print("text") becomes print(_("text")).

2. The gettext framework provides scripts that can extract strings that are param-
eterstothe _ function. Soin the above case it would extract “text”. These strings,

usually in English, but any other language will do, are called msgid and become
the ID of a text. So here we have the message ID: msg_id "text" . These mes-

sage IDs are collected in a file with the extension *.pot (PO template) and other
useful information are collected too.

3. Step 1 and 2 are basically the internationalization of a program. The next step
is the localization. Here gettext is used to create a local version. This is

basically a copy from *.pot to *.po. In case of British English it would
be en_GB.UTF-8.po and in case of German spoken in Germany it would be
de_DE.UTF-8.po. Next to the msg_id entry you will find a msgstr ""
entry. For a localization to be complete, you need to translate the msgid to the
msgstr . For German this would be msid "Text" and msgstr "Text".

4. Intheory the localization is done. However some programs would like to have the
translated string database in a binary format. There are also toolsinthe gettext

framework available to convertthe *.po filetoabinaryformat. Usually they have

the extension *.mo .

2 GNU gettext

Consider the following Python program main :

import gettext

_ = gettext.gettext

Christian Kiilker 2/6

https://phrase.com/blog/posts/translate-python-gnu-gettext/

Python 118n L10n 2023-01-18

def print_some_strings():
print(_("Hello world"))
print(_("Internationalisation"))

if _ name__=='__main__':
print_some_strings()

The corresponding *.pot file would look like:

SOME DESCRIPTIVE TITLE.

Copyright (C) YEAR ORGANIZATION

FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

#
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"POT-Creation-Date: 2022-01-28 16:47+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: pygettext.py 1.5\n"

#: src/main.py:5
msgid "Hello world"
msgstr ""

#: src/main.py:6
msgid "Internationalisation"
msgstr ""

This is translated from reference English (whatever the developer wants) to the target lan-
guage (for example, English spoken in the United States of America). In this case it is just
a copy of strings.

English translations for PACKAGE package.

Copyright (C) 2022 THE PACKAGE'S COPYRIGHT HOLDER

This file is distributed under the same license as the PACKAGE package.
Automatically generated, 2022.

#

Christian Kiilker 3/6

Python 118n L10n 2023-01-18

msgid ""

msgstr ""

"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2022-05-18 06:38+0200\n"
"PO-Revision-Date: 2022-05-20 17:16+0200\n"
"Last-Translator: Automatically generated\n"
"Language-Team: none\n"

"Language: en_US\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=(n != 1);\n"

#: src/main.py:5
msgid "Hello world"
msgstr "Hello world"

#: src/main.py:6
msgid "Internationalisation™
msgstr "Internationalization™

In short:
2. Create *.pot: xgettext --no-wrap --from-code=UTF-8 --keyword=_ -L Python --copy
3. Create *.po: msginit --no-wrap --no-translator --input=main.pot --locale=en_US
4. Update *.po from *.pot: msgmerge --no-wrap --backup=none --update main.po main.
5. Create *.mo from *.po: msgfmt -o en_US.mo main.pot

While the above is possible it is more common to store the *.mo files differently, like:

locale|—
de_DE|
L— LC_MESSAGES|
F— main.mo|
L— main.pof—
en_US|
L— LC_MESSAGES|
|-— main.mo|
L main.pol—
ja_JP|
L— LC_MESSAGES |

— main.mo|

L— main.pol—

Christian Kiilker 4/6

Python 118n L10n 2023-01-18

main.pot

3 Jinja2

Touse *.mo filein Pythonwith jinja2 onecanusetheextension: jinja2.ext.i18n

env = Environment(loader=file_loader,extensions=["jinja2.ext.i18n"])

This allows the usage of gettext and ngettext function callsin the template.
{{ getext('Hello World') }}

Itis also possible to configure jinja2 to use a default call or to rename the function call.

4 Limitations

This document describes the basics of GNU gettext . Advanced usage like numbers,
singular and plural or ngettext has not been touched.

5 History

Version Date Notes

0.1.1 2023-01-18 Add Jinja2 section
0.1.0 2022-05-30 Initial release

6 Disclaimer of Warranty

THERE IS NO WARRANTY FOR THIS INFORMATION, DOCUMENTS AND PROGRAMS, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE INFORMATION, DOC-
UMENT OR THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE INFORMATION, DOCUMENTS AND PROGRAMS IS WITH YOU. SHOULD THE INFORMATION, DOCUMENTS
OR PROGRAMS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

7 Limitation of Liability

INNO EVENT UNLESS REQUIRED BY APPLICABLE LAW ORAGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, ORANY OTHER PARTY
WHO MODIFIES AND/OR CONVEYS THE INFORMATION, DOCUMENTS OR PROGRAMS AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE INFORMATION, DOCUMENTS OR PROGRAMS (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE INFORMATION, DOCUMENTS OR PROGRAMS TO

Christian Kiilker 5/6

Python 118n L10n 2023-01-18

OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Christian Kiilker 6/6

	Internationalization
	GNU gettext
	Jinja2
	Limitations
	History
	Disclaimer of Warranty
	Limitation of Liability

