Git Conversations With The SSH Agent
Conversation

Christian Kulker

2022-06-22

Contents

When using the ssh command, ssh uses one key stored in ~/.ssh and one seldom
need to deal with the details. However recently in the context of switching identities and
authorization away from passwords more oftenthannot ssh publickeys are used to con-
trol access. This is also the case with git . While on most systems this his handled trans-
parently, sometimes the wrong key is used and access is denied even though it should
not. This document deals with the ssh key management, agents and git .

For the sake of education, lets assume we generated a private and public key to be used
solely for the access to a commercial site under ~/.ssh called id_ed25519_github .
So the following files exist:

+ ~/.ssh/id_ed25519_github (private key - we never touch this!)
+ ~/.ssh/id_ed25519_github.pub (public key)

As we are in a dangerous world to help with this kind of things we need an agent. Nicely
SSH provide such an agent called ssh-agent .

Usually this agent is already started on your favorite OS: Debian. Itis very common to start
the agent together with the X session aka desktop. However for some reasons unknown
to me he usually is not very talkative (or dormant if X is not started) at least when using
the system remotely.

Git Conversations With The SSH Agent Conversation 2022-06-22

To understand if our agent is alive and willing to communicate with a mortal, one can see
if the agent is enlisted in the process list:

ps ax|grep ssh-agent|grep -v grep

33178 ? Ss 0:02 /usr/bin/ssh-agent x-session-manager

After we understood that we have an agent alive, we might ask him about our keys, oddly
we do not execute ssh-agent ask or something but ssh-add, even though we are
not adding anything. Who would have thought?

ssh-add -1

This will list fingerprints of all identities currently represented by the agent without using
a magnifying glass.

However in some case the agent is just too secretive and will not talk to us:

ssh-add -1

Could not open a connection to your authentication agent.

To change his mind, we invoke him and execute his answer withan eval (orsimilar) com-
mand. It works like Eliza you reflect the communication back and as you see, commina-
tion with an agent is two dimensional. The eval command basically sets the variables:
SSH_AUTH_SOCK and SSH_AGENT_PID sothatthe ssh commands knows how to talk
to the agent. It depends on the ticks, if you do no use a back-tick you will get.

eval 'ssh-agent'
SSH_AUTH_SOCK=/tmp/ssh-fMGM90rtVYR4/agent.990266; export SSH_AUTH_SOCK;

SSH_AGENT_PID=990267; export SSH_AGENT_PID;
echo Agent pid 990267;

This will not update the ssh-agent and the connection will be refused. If you are using
back-ticks it looks different.

eval “ssh-agent’
Agent pid 990667

If you do not like back-ticks, other approaches also work. There seems to be no difference
if you use the ‘-s’ or not, even if this option is used in other examples online. The ‘-s’ op-
tions generate Bourne shell commands on stdout . This is the default if SHELL does
not look like it’s a csh style of shell. So it is better to let the agent guess the shell and only
if you are smarter than the agent tell him how to speak (csh or Bourne).

eval $(ssh-agent)’
Agent pid 5079

Christian Kiilker 2/4

https://en.wikipedia.org/wiki/ELIZA

Git Conversations With The SSH Agent Conversation 2022-06-22

ssh-add -1

The agent has no identities.

Now we can add an identity.

ssh-add ~/.ssh/id_ed25519_github
Identity added: /home/$USER/.ssh/id_ed25519_github ($USER@$HOST.$TLD)
ssh-add -1

256 SHA256:Cekfa54+saeceiR4o00VegXGYqu+Veixae7rooroDefs $USER@$HOST.$TLD
(ED25519

After it is clear that the agent is using the correct key, one could test the access to https:
//gitub.com for example.

ssh -vT git@github.com

You could of course tell ssh directly what key to use, and bypass the agent entirely, if
you do not like ssh to talk to him. Add this to your ~/.ssh/config .

Host github.com
HostName github.com
IdentityFile ~/.ssh/id_ed25519_github

1 History

Version Date Notes

0.1.0 2022-06-22 Initial release

2 Disclaimer of Warranty

THERE IS NO WARRANTY FOR THIS INFORMATION, DOCUMENTS AND PROGRAMS, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE INFORMATION, DOC-
UMENT OR THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE INFORMATION, DOCUMENTS AND PROGRAMS IS WITH YOU. SHOULD THE INFORMATION, DOCUMENTS
OR PROGRAMS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

3 Limitation of Liability

INNO EVENT UNLESS REQUIRED BY APPLICABLE LAW ORAGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, ORANY OTHER PARTY
WHO MODIFIES AND/OR CONVEYS THE INFORMATION, DOCUMENTS OR PROGRAMS AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY

Christian Kiilker 3/4

https://gitub.com
https://gitub.com

Git Conversations With The SSH Agent Conversation 2022-06-22

TO USE THE INFORMATION, DOCUMENTS OR PROGRAMS (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE INFORMATION, DOCUMENTS OR PROGRAMS TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Christian Kiilker 4/4

	History
	Disclaimer of Warranty
	Limitation of Liability

