Contents

1 History

Git

Christian Kiilker

2022-05-30

2 Inflate: data stream error and unable to unpack HASH header

2.1 Backup Method

2.2 Copy Method .

2.3 Push -f Method

2.4 RepairaBlob with hash-object Method

2.5 Further Not Tested PossibleMethods
2.6 SUMMANY: . . . o e

3 ReconcileDivergentBranches 0.,

4 DisclaimerofWarranty

5 LimitationofLiability

1 History

Version Date Notes

0.1.4 2022-05-30 Change shell to bash for code fences

0.1.3 2022-05-09 Change section levels

0.1.2 2022-04-22 Front matter, history, syntax highlighting

0.1.1 2022-04-21 Data stream error, unknown compression method, unable to
unpack HASH header

0.1.0 2022-04-13 Initial release (Reconcile Divergent Branches)

Git 2022-05-30

2 Inflate: data stream error and unable to unpack HASH
header

WARNING: This section include hacks. Do this on your own risk and make plenty backups.

In case a git repository gets corrupted (due a corrupted file system for example) git shows
an error message that seems to point to something else (at least in the first 2 lines).

git clone USER@HOST:REPOSITORY.git

Cloning into 'REPOSITORY'...

remote: error: inflate: data stream error (unknown compression method)
remote: error: unable to unpack HASH header

remote: fatal: loose object 81HASH1 (stored in ./objects/81/HASH1) is

corrupt

error: git upload-pack: git-pack-objects died with error.

fatal: git upload-pack: aborting due to possible repository corruption on
the remote side.

remote: aborting due to possible repository corruption on the remote side.

Here REPOSITORY and HASH1 needs to be replaced with discrete values and 81 is
probably a different value, 81HASH1 is the complete hash.

Make backups of the local and remote repository.

Usually an git fsck local repository should be fine. If there is access to the remote
repository execute an git fsck with the correct user rights. (Replace HASH1 and
HASH2 with hashes to imagine the original message).

git fsck

error: inflate: data stream error (unknown compression method)
error: unable to unpack header of ./objects/81/HASH1

error: 81HASH1: object corrupt or missing: ./objects/81/HASH1
Checking object directories: 100% (256/256), done.

missing tree 81HASH1

dangling tree HASH2

Some parametersto fsck will get more information.

git --bare fsck-objects --full

error: inflate: data stream error (unknown compression method)

error: unable to unpack header of
PATH1/repositories/REPOSITORY.git/objects/81/HASH1

error: 81HASH1: object corrupt or missing:
PATH1/repositories/REPOSITORY.git/objects/81/HASH1

Christian Kiilker 2/9

Git 2022-05-30

Checking object directories: 100% (256/256), done.
missing tree 81HASH1
dangling tree HASH2

git fsck --full 81HASH1

Checking object directories: 100% (256/256), done.
Checking objects: 100% (285/285), done.

dangling commit HASH

To actually understand what the 81HASH1 isreferencing (replace 8 1HASH1 with the cur-
rent hash):

git ls-tree 81HASH1
040000 tree HASH5 DIRECTORY
120000 blob HASH6 FILE/LINK/OBJECT

This tells you that a DIRECTORY and a FILE/LINK/OBJECT is referenced by the 8 1HASH1 .
One as tree the other as blob.

Ifyouuse git log you can find moreinformation.

find -name OBJECT

PATH/OBJECT

git log --raw --all --full-history -- PATH/OBJECT
commit HASH6

Author: FIRSTNAME LASTNAME (SOMETHING) <USER@HOST>
Date: Tue Aug 24 03:35:45 2021 +0200

add new link

:000000 120000 0000000... HASH7... A PATH/OBJECT

If you have a known working (non corrupt) copy (clone) of the remote repository that
do not show errors with git fsck and you have commit/push rights, you might try a

git push -f.

(Disclaimer: | do not know enough about the internals of git to understand if

git push -f iseven arelevant candidate for “repairing” this situation. However | will
try anyways.)

git push -f

Counting objects: 845, done.

Christian Kiilker 3/9

Git 2022-05-30

Delta compression using up to 8 threads.

Compressing objects: 100% (610/610), done.

Writing objects: 100% (845/845), 207.98 MiB | 253.00 KiB/s, done.
Total 845 (delta 361), reused 268 (delta 85)

remote: error: inflate: data stream error (unknown compression method)

remote: error: unable to unpack 81HASH1 header
remote: fatal: cannot read existing object info 81HASH1
error: unpack failed: index-pack abnormal exit
To HOST:REPOSITORY.git
I [remote rejected] master -> master (unpacker error)
error: failed to push some refs to 'USER@HOST:REPOSITORY.git'

While it might or might not work, in this example it does not. As the problem lies on the
remote site, my impression is, that is that much one can do locally.

As | have access to the server | was curious and run md5sum over the file 81/HASH1 .

HASH1 | xargs md5sum
/PATH1/repositories/REPOSITORY.git/objects/81/HASH1
/PATH2/repositories-backup/REPOSITORY.git/objects/81/HASH1

/PATH3/REPOSITORY/.git/objects/81/HASH1
/PATH4/repositories/REPOSITORY.git/objects/81/HASH1
/PATH5/repositories-backup/REPOSITORY.git/objects/81/HASH1

As visible, one HASH3 was different than the other HASH3 . While PATH1 and PATH2
are the gitolite repository on the server after migration, PATH4 and PATHS are

the pre migration states of the gitolite repository before it moved to the server. All

md5sum hashes are the same. This means the error occurred prior to migration. Only a
local copy of the repository on the server had a different hash, HASH3 . That was a clone
of the repository while it was not corrupted.

2.1 Backup Method

If you have a non corrupted version of the repository as a backup, now it is time to restore
the repository from backup.

2.2 Copy Method

In case you have no backup, but some other copies of the repository (bare or working
tree). This example copies a good version of HASH1 from a local clone on the server to
the central gitolite repository.

Christian Kiilker 4/9

Git 2022-05-30

cp /PATH3/REPOSITORY/.git/objects/81/HASH1

/PATH1/repositories/REPOSITORY.git/objects/81/HASH1

This “solved” the issue. Itis debatable if it really solved the issue. One should carefully ex-
amine the repository with the non-corrupted clone before concluding it. However cloning
was possible again.

git clone USER@HOST:REPOSITORY.git

Cloning into 'REPOSITORY'...

remote: Enumerating objects: 884, done.

remote: Counting objects: 100% (884/884), done.

remote: Compressing objects: 100% (733/733), done.

remote: Total 884 (delta 375), reused 0 (delta 0)1.98 MiB/s
Receiving objects: 100% (884/884), 209.04 MiB | 7.03 MiB/s, done.
Resolving deltas: 100% (375/375), done.

Checking out files: 100% (126/126), done.

2.3 Push -f Method

Out of curiosity | made some other tests on the remote machine. First | tested the local
clone on the remote machine (after reverting the repository to the bad state):

cd PATH3/REPOSITORY
md5sum .git/objects/81/HASH1
HASH3 .git/objects/81/HASH1

git fsck
Checking object directories: 100% (256/256), done.
Checking objects: 100% (612/612), done

git push -f
Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.
Delta compression using up to 2 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 304 bytes | 304.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0)
To HOST:REPOSITORY.git
7497095. .b6fbedd master -> master

md5sum .git/objects/81/HASH1
/PATH1/repositories/REPOSITORY.git/objects/81/HASH1

Christian Kiilker 5/9

Git 2022-05-30

HASH3 .git/objects/81/HASH1

HASH2 /PATH1/repositories/REPOSITORY.git/objects/81/HASH1

So this operation do indeed not change HASH1 . Howeverthe push -f worked. Doinga

commitanda push -f from thelocal clone to the remote server did not work however.

git push -f
Counting objects: 845, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (610/610), done.
Writing objects: 100% (845/845), 207.98 MiB | 252.00 KiB/s, done.
Total 845 (delta 361), reused 268 (delta 85)
remote: error: inflate: data stream error (unknown compression method)
remote: error: unable to unpack 81HASH1 header
remote: fatal: cannot read existing object info 81HASH1
error: unpack failed: index-pack abnormal exit
To HOST:REPOSITORY.git
I [remote rejected] master -> master (unpacker error)
error: failed to push some refs to 'USER@HOST:REPOSITORY.git'

So this probably mean that push -f is notreliable to tell if the repository is broken or
not, and nor does it repair it if execution is succeeding.

2.4 Repair a Blob with hash-object Method

This idea comes from git.kernel.org and works well on blobs. Trees are difficult to restore.
Theinformation retrieval method with git log --raw --all --full-history -- PATH/OBJECT
might give information about a blob that can be restored from previous versions.

git log --raw --all --full-history -- PATH/OBJECT
commit HASH6

Author: FIRSTNAME LASTNAME (SOMETHING) <USER@HOST>
Date: Tue Aug 24 03:35:45 2021 +0200

add new link

:000000 120000 0000000... HASH7... A PATH/OBJECT

Recreate the OBJECT either by checkout old version and use editor or by other means.

git hash-object -w PATH/NEW_OBJECT

However it can be that the object is not OK:

Christian Kiilker 6/9

https://git.kernel.org/pub/scm/git/git.git/tree/Documentation/howto/recover-corrupted-blob-object.txt?id=HEAD

Git 2022-05-30

git log --raw --all --full-history -- PATH/LINK
error: inflate: data stream error (unknown compression method)

error: unable to unpack 81HASH1 header
fatal: loose object 81HASH1 (stored in ./objects/81/HASH1) is corrupt

2.5 Further Not Tested Possible Methods

Other possible solutions to repair a remote repository might be to use the following (but
were not performed):

+ git repack

+ git gc --aggressive

+ In case of big objects on servers with little RAM, one might investigate to change the
limits on the git pack and unpack task, that might corrupt or die on the fly. One can
seesomethinglike error: pack-objects died of signal 91171/66888)
that something ended prematurely.

2.6 Summary:

To solve the issue with a corrupt repository, either use a good backup (preferably) or copy
a correct object over the corrupt object (if you are bold). To decide if something is a good
backup md5sum can help to see if git objects differ (have a bit error). The command
git push -f seemirrelevant,the hash-object and git log approach will gather
more information and will give you a better understanding what you are actually doing,
however it will probably only be feasible on broken blobs and not on trees and it might
be not reliable, due to the fact that the restoring method relies on the knowledge of the
content of the (to be restored) object itself or the luck to find a minimal changed prior
commit that is not corrupted.

3 Reconcile Divergent Branches

From git2.27.0 onwards the useris confronted with a similar message from git, when using
git pull.

Warning: Pulling without specifying how to reconcile divergent branches is
discouraged. You can squelch this message by running one of the following
commands sometime before your next pull:

git config pull.rebase false # merge (the default strategy)
git config pull.rebase true # rebase
git config pull.ff only # fast-forward only

Christian Kiilker 7/9

Git 2022-05-30

Newer version do basically the same:

hint: Pulling without specifying how to reconcile divergent branches is
hint: discouraged. You can squelch this message by running one of the

following

hint: commands sometime before your next pull:

hint:

hint: git config pull.rebase false # merge (the default strategy)

hint: git config pull.rebase true # rebase

hint: git config pull.ff only # fast-forward only

hint:

hint: You can replace "git config" with "git config --global" to set a
default

hint: preference for all repositories. You can also pass --rebase, --no-
rebase,

hint: or --ff-only on the command line to override the configured default
per

hint: invocation.

Which solution should be chosen?

I am not an expert on this, but here are my thoughts. This question is about which strategy
to be used in case of a pull that would create a minor local “disturbance”: 1) merge 2) re-
base or 3) fast-forward only.

It seems that the previous default (merge) strategy was not sane and the git developers
decided to ask the user to chose a sane (or at least known) strategy (to the user). I think it
is a good practice to ask and not to change the default behavior without asking and there-
fore risk to break work flow or code of users. The previous default strategy (merge) had
the risk of the so called foxtrot merges where the order of the first HEAD and the second
entry gets messed up. So git config pull.rebase false seems arisky option.

The git pull --help page looks innocent at the beginning. However the default is

that thisis a short form of git fetch&&git merge FETCH_HEAD . Thatcanresultina
merge commit (with or without foxtrot does not matter so much). This means that pulling
from a remote repository is not a harmless operation as this is not a pure download and
it might change the commit history by adding (not committed) stuff from your hard disk.
And it might even include your own work into git, even though you did not anticipated it
or you deliberately wanted to commit it later or not at all. And you might not even notice
it. Let’s be honest. Who is reading all the gibberish git is writing all the time?

So if the first (default) option is evil, one should take the second one and make a
git fetch&&git rebase forevery git pull ? Well, this circumvent foxtrot merges
as the commit history is linear (clean). The local master would be on top of the remote
origin/master. But still it changes the commit history (sometimes) without asking. Other
(old) side effects, like the git history is a bunch of lies not considered.

Christian Kiilker 8/9

https://blog.developer.atlassian.com/stop-foxtrots-now/
https://stevebennett.me/2012/02/24/10-things-i-hate-about-git/

Git 2022-05-30

In my opinion the git pull --ff-only is the best solution. This will complain
if the operation would need a merge, or a re-base or whatever and not a clean fast-
forward download. So executing git config pull.ff only will get rid of the
warning. If you are even more convinced of this solution you can make it global:
git config --global pull.ff only

While researching, almost at the end of writing, | stumbled over the sffc’s Tech Blog with
nice graphics that has a simliar view on the topic but explain it better.

To summarize (and a suggestion to improve up on the message [attention this is humor!]):

- 'git config pull.rebase false® # occasionally making sneaky commits of own
work with a dirty history that sometimes
dance foxtrot (and may break the

repository)

- 'git config pull.rebase true® # occasionally making sneaky commits of own
work with a clean history (of lies)

- "git config pull.ff only" # stop downloading if local work would be
overwritten or committed and do not

change
(or lie about) history

4 Disclaimer of Warranty

THERE IS NO WARRANTY FOR THIS INFORMATION, DOCUMENTS AND PROGRAMS, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE INFORMATION, DOC-
UMENT OR THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE INFORMATION, DOCUMENTS AND PROGRAMS IS WITH YOU. SHOULD THE INFORMATION, DOCUMENTS
OR PROGRAMS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

5 Limitation of Liability

INNO EVENT UNLESS REQUIRED BY APPLICABLE LAW ORAGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, ORANY OTHER PARTY
WHO MODIFIES AND/OR CONVEYS THE INFORMATION, DOCUMENTS OR PROGRAMS AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE INFORMATION, DOCUMENTS OR PROGRAMS (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE INFORMATION, DOCUMENTS OR PROGRAMS TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Christian Kiilker 9/9

https://blog.sffc.xyz/post/185195398930/why-you-should-use-git-pull-ff-only-git-is-a

	History
	Inflate: data stream error and unable to unpack HASH header
	Backup Method
	Copy Method
	Push -f Method
	Repair a Blob with hash-object Method
	Further Not Tested Possible Methods
	Summary:

	Reconcile Divergent Branches
	Disclaimer of Warranty
	Limitation of Liability

