Github Managing Forks

Christian Kulker

2022-06-25

Contents

Managing forks can be done in different ways. One way is to manage forks via the web
interface. While this has the advantage of no additional configuration in the forked repos-
itory, it has the disadvantage of a complex workflow and can not be applied to all cases.
In addition it requires to open several views (open browser tabs) of different repositories
whichin some cases can lead to open a pull request at the wrong repository. And of course
those requests can not be deleted and mark the error for eternity. Because of this an other
method that uses the command line and the additional configuration of an upstream re-
mote origin will be described in this document.

1 ToLongToRead - TLTR

Set up managing fork via upstream (drawback, local repo will be ahead)

Github Managing Forks 2022-06-25

remote show
remote add upstream https://github.com/whoever/whatever.git

remote show
remote show upstream

Update fork via ‘upstream’ (Update only, no local commits expected)

git remote show upstream

git fetch upstream

git branch -va

export B=$(git branch -va|grep 'origin/HEAD'|sed -e
's%.*remotes/origin/HEAD.*->\s\+origin/%%g")

git checkout $B

git merge upstream/$B
git push

If done via GUI (“Fetch upstream”), it will also add a merge commit like “Merge branch
‘corona-warn-app:release/2.24.x’ into development” (if the HEAD points to development)
and leave the repository +1 commits ahead.

2 Adding A Remote Upstream

To understand the current situation of a git repository - any repository, regardless if it is a
fork or not - the git remote command can be used.

git remote show

origin

Usually it just shows the word origin in case the repository is a fork. When specifying

the name origin more information can be displayed.

git remote show origin

For the repository cwa-documentation it will give for example:

* remote origin

Fetch URL: git@github.com:ckuelker/cwa-documentation.git

Push URL: git@github.com:ckuelker/cwa-documentation.git

HEAD branch: main

Remote branches:
SabinelLoss-patch-1 tracked
Sabineloss-patch-2 tracked
fix/typo-overview-security.md-identification-against tracked

Christian Kiilker 2/6

Github Managing Forks 2022-06-25

main tracked
Local branch configured for 'git pull':
main merges with remote main
Local refs configured for 'git push':
fix/typo-overview-security.md-identification-against pushes to \
fix/typo-overview-security.md-identification-against (up to date)
main pushes to \
main (up to date)

After the configuration details of pushing and fetching and the current status where the
head of the repository is pointing at (main), information about remote and local branches
are displayed.

git remote add upstream https://github.com/whoever/whatever.git

Example:

git remote add upstream
https://github.com/corona-warn-app/cwa-documentation.git

To confirm that a remote entity was added successfully the git remote command is
useful.

git remote show
origin
upstream

It should show the word upstream.

Similar the information of the remote origin also for the remote upstream de-

tailed information can be displayed viathe git remote show upstream command.

Forthe cwa-documentation repository the upstream information looks as follows:

git remote show upstream

* remote upstream
Fetch URL: https://github.com/corona-warn-app/cwa-documentation.git
Push URL: https://github.com/corona-warn-app/cwa-documentation.git
HEAD branch: main

Remote branches:
SabinelLoss-patch-1 tracked
SabinelLoss-patch-2 tracked
fix/typo-backend-infrastructure-architecture tracked
main tracked
tkowark-patch-1 tracked

Christian Kiilker 3/6

Github Managing Forks 2022-06-25

tune_linting tracked

Local ref configured for 'git push':
main pushes to main (fast-forwardable)

The above shows an up to date situation. The following show an out of sync situation
(output truncated):

Local branch configured for 'git pull':
main merges with remote main
Local ref configured for 'git push':

main pushes to main (local out of date)

3 Updating the fork

There are more than one approach to update a fork. In trivial cases the GUI of the git
repository provides (for example github.com) a method to do so. As this can change
with a new release of the GUI a more generic method is to add a remote upstream, fetch
the upstream, checkout main and merge upstream and main.

Keeping the fork up-to-date is not absolutely necessary. If working on anything more than
just a tiny quick fix, make sure you keep your fork up to date by tracking the original “up-
stream” repo that you forked. To do this, you’ll need to add a remote:

$ git remote add upstream

https://github.com/UPSTREAM-USER/ORIGINAL-PROJECT.git

Verify the new remote named ‘upstream’ with git remote -v . See this example for
cwa-documentation.git.

git remote -v

origin git@github.com:ckuelker/cwa-documentation.git (fetch)

origin git@github.com:ckuelker/cwa-documentation.git (push)

upstream https://github.com/corona-warn-app/cwa-documentation.git
(fetch)

upstream https://github.com/corona-warn-app/cwa-documentation.git
(push)

Update the repository with the latest changes from upstream: fetch latest commits and
branches.

Christian Kiilker 4/6

Github Managing Forks 2022-06-25

$ git fetch upstream

View all branches, including those from upstream

$ git branch -va

Or if you would like to automate the search.

export B=$(git branch -va|grep 'origin/HEAD'|sed -e

's%.*remotes/origin/HEAD.*->\s\+origin/%%g")

Checkout the main branch and merge the upstream repository main branch. Sometimes
the main branch is called ‘main’, sometimes other names like ‘development’

$ git checkout $B

$ git merge upstream/$B

In case there are no unique commits on the local main branch, git will simply perform a
fast-forward. However, if changes have been made to the source (upstream) repository
(this probably should not be done) conflicts may occur. Be careful to changes made by
upstream. If changes had been done to the upstream, you should consider 2 ways. One
is to just follow upstream. If this is the case only update the fork if your pull request was
successfully integrated into the upstream repository. Or second is to develop new soft-
ware on the basis of the fork. Then synchronizing the fork should not be done in a very
controlled way. If you find yourself in the second category and are forced to make many,
large and complex synchronizations to your fork, you should consider to abandon your
fork and contribute to the upstream repository.

$ git push

4 Additional Steps

You are done, if you just forked the other repository. The next steps depends on the ques-
tion (1) what you have done to the fork: history and (2) what is the intended use: usage.

The history question (1) can be divided into:

Nothing (no changes, just a fork)

Changes (changes in the work tree: nothing added or committed)
Add changes

Add changes and committed

Add changes and committed and created a pull request

a s wnN e

Christian Kiilker 5/6

Github Managing Forks 2022-06-25

6. Add changes and committed and created a pull request that was accepted
The use question (2) can be divided into:

1. Users should be able to use a fork with a pristine commit history
2. Users should be able to use a fork with a different commit history

5 Further Reading

+ [How do lupdatea github forked repository]
+ Syncing a fork

6 History

Version Date Notes

0.1.1 2022-06-25 Examples, update TLTR, shell->bash, commands, main
0.1.0 2020-09-24 Initial release

7 Disclaimer of Warranty

THERE IS NO WARRANTY FOR THIS INFORMATION, DOCUMENTS AND PROGRAMS, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE INFORMATION, DOC-
UMENT OR THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE INFORMATION, DOCUMENTS AND PROGRAMS IS WITH YOU. SHOULD THE INFORMATION, DOCUMENTS
OR PROGRAMS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

8 Limitation of Liability

IN'NO EVENT UNLESS REQUIRED BY APPLICABLE LAW ORAGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, ORANY OTHER PARTY
WHO MODIFIES AND/OR CONVEYS THE INFORMATION, DOCUMENTS OR PROGRAMS AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE INFORMATION, DOCUMENTS OR PROGRAMS (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE INFORMATION, DOCUMENTS OR PROGRAMS TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Christian Kiilker 6/6

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork

	To Long To Read - TLTR
	Adding A Remote Upstream
	Updating the fork
	Additional Steps
	Further Reading
	History
	Disclaimer of Warranty
	Limitation of Liability

